Aircraft - Messerschmitt Me 163B Komet - museum postcard c.1960s

£0.99 (NZ$2.06)
Ship to New Zealand : £3.10 (NZ$6.44)
Total : £4.09 (NZ$8.49)
Location : United Kingdom - GBP(£)
Prices in NZD(NZ$) are estimates
Ask Question
Notice from Seller : Always read full seller description below (scroll down). Please wait for invoice on multiple purchases. Postage rate shown above is the current rate & supersedes anything below. Thanks!
  • Condition : Used
  • Dispatch : 2 Days
  • Brand : None
  • ID# : 140774430
  • Barcode : None
  • Start : Mon 06 Jul 2015 22:10:45 (NZST)
  • Close : Run Until Sold
  • Remain :
    Run Until Sold
justthebook accepts payment via PayPal
Checks/Cheques
International Shipping to New Zealand International Shipping to New Zealand for 1 item(s) edit
Royal Mail International Standard = £3.10 (NZ$6.44)

Shipping Calculator


Seller's Description

    Postcard

  • Picture / Image:  Messerschmitt Me 163B Komet
  • Publisher:  Imperial War Museum, London
  • Postally used:  no
  • Stamp:  n/a
  • Postmark(s): n/a
  • Sent to:  n/a
  • Notes / condition: 

 

Please ask if you need any other information and I will do the best I can to answer.

Image may be low res for illustrative purposes - if you need a higher definition image then please contact me and I may be able to send one. No cards have been trimmed (unless stated).

------------------------------------------------

Postage & Packing:

Postage and packing charge should be showing for your location (contact if not sure).

No additional charges for more than one postcard. You can buy as many postcards from me as you like and you will just pay the fee above once. Please wait for combined invoice. (If buying postcards with other things such as books, please contact or wait for invoice before paying).

Payment Methods:

UK - PayPal, Cheque (from UK bank) or postal order

Outside UK: PayPal ONLY (unless otherwise stated) please.   NO non-UK currency checks or money orders (sorry).

NOTE: All postcards are sent in brand new stiffened envelopes which I have bought for the task. These are specially made to protect postcards and you may be able to re-use them. In addition there are other costs to sending so the above charge is not just for the stamp!

I will give a full refund if you are not fully satisfied with the postcard.

----------------------------------------------

Text from the free encyclopedia WIKIPEDIA may appear below to give a little background information (internal links may not  work) :

*************

The Messerschmitt Me 163 Komet, designed by Alexander Lippisch, was a German rocket-powered fighter aircraft. It is the only rocket-powered fighter aircraft ever to have been operational. Its design was revolutionary, and the Me 163 was capable of performance unrivaled at the time. German test pilot Heini Dittmar in early July 1944 reached 1,130 km/h (700 mph), not broken in terms of absolute speed until November 1947[citation needed]. Over 300 aircraft were built; the Komet proved ineffective as a fighter, having been responsible for the destruction of only about nine Allied aircraft.[2][2] (16 air victories for 10 losses, according to other sources.)[3]

Work on the design started under the aegis of the Deutsche Forschungsanstalt für Segelflug (DFS)—the German Institute for the Study of sailplane flight. Their first design was a conversion of the earlier Lippisch Delta IV known as the DFS 39 and used purely as a glider testbed of the airframe. A larger follow-on version with a small propeller engine started as the DFS 194. This version used wingtip-mounted rudders, which Lippisch felt would cause problems at high speed. He later redesigned them to be mounted on a conventional vertical stabilizer at the rear of the aircraft. The design included a number of features from its glider heritage, notably a skid used for landings, which could be retracted into the aircraft's keel in flight. For takeoff, a pair of wheels, each mounted onto the ends of a specially designed cross axle, together comprising a takeoff ""dolly"" mounted under the landing skid, were needed due to the weight of the fuel, but these were released shortly after takeoff.

It was planned to move to the Walter R-1-203 cold engine of 400 kg (880 lb) thrust when available, which used a monopropellant consisting of stabilized HTP known by the name T-Stoff. Heinkel had also been working with Hellmuth Walter on his rocket engines, mounting them in the He 112 for testing, and later in the first purpose-designed rocket aircraft, the He 176. Heinkel had also been selected to produce the fuselage for the DFS 194 when it entered production, as it was felt that the highly volatile fuel would be too dangerous in a wooden fuselage, with which it could react. Work continued under the code name Projekt X.[4]

The division of work between DFS and Heinkel led to problems, notably that DFS seemed incapable of building even a prototype fuselage. Lippisch eventually requested to leave DFS and join Messerschmitt instead. On 2 January 1939, he moved along with his team and the partially completed DFS 194 to the Messerschmitt works at Augsburg. The delays caused by this move allowed the engine development to ""catch up"". Once at Messerschmitt, the decision was made to skip over the propeller-powered version and move directly to rocket power. The airframe was completed in Augsburg and shipped to Peenemünde West, one of the quartet of Erprobungsstelle-designated military aviation test facilities of the Reich, in early 1940 to receive its engine. Although the engine proved to be extremely unreliable, the aircraft had excellent performance, reaching a speed of 342 mph (550 km/h) in one test.

Production of a prototype series started in early 1941, known as the Me 163. Secrecy was such that the RLM's ""GL/C"" airframe number, 8-163, was actually that of the earlier, pre-July 1938 Messerschmitt Bf 163 project to produce a small two-passenger light aircraft, which had unsuccessfully competed against the winning Fieseler Fi 156 Storch for a production contract. It was thought that intelligence services would conclude any reference to the number ""163"" would be for that earlier design. The Me 163A V4 was shipped to Peenemünde to receive the HWK RII-203 engine on May 1941. By 2 October 1941, the Me 163A V4, bearing the radio call sign letters, or Stammkennzeichen, ""KE+SW"", set a new world speed record of 1,004.5 km/h (624.2 mph), piloted by Heini Dittmar, with no apparent damage to the aircraft during the attempt.[5][6] Some postwar aviation history publications stated that the Me 163A V3 was thought to have set the record.[7]

The 1,004 km/h record figure would not be officially approached until the postwar period by the new jet fighters of the British and U.S., and was not surpassed (except by the later Me 163B V18 in 1944, but seriously damaged by the attempt) until the American Douglas Skystreak turbojet-powered research aircraft did so on 20 August 1947 with no damage. Five prototype Me 163A experimental V aircraft were built, adding to the original DFS 194 (V1), followed by eight pre-production examples designated as ""Me 163 A-0"".[8] Some doubt once existed about the Stammkennzeichen code assigned to the Me 163A V4 prototype - at one time it was thought to have used the code CD+IM (also speculated to be the A V3's code), but later re-examination of available Luftwaffe records indicated that the sixth through 13th A-series prototypes were assigned the Stammkennzeichen code block of ""CD+IK"" through ""CD+IR"", confirming the ""KE+SW"" designation for the V4 airframe.[9]

During testing, the jettisonable main landing gear arrangement, of a differing design to that used on the later B-series production aircraft, was a serious problem. The A-series ""dolly"" landing gear caused many aircraft to be damaged on takeoff when the wheels rebounded and crashed into the aircraft due to the sizable springs and shock absorbers on the A-series ""dolly"" devices which possessed well-sprung independent suspension systems for each main wheel,[10] not used on the much simpler, crossbeam-axled B-series aircraft dollies. Malfunctioning hydraulic dampers in the skid — or with the pilot simply forgetting to release the hydraulic pressure on the skid before landing, after extending it for touchdown to absorb the force of the landing itself — could cause back injuries to the pilot when landing, as the aircraft lacked steering or braking control during landing, and was unable to avoid obstacles.

Once on the ground, the aircraft had to be retrieved by a Scheuch-Schlepper, a converted small agricultural vehicle towing a special retrieval trailer that rolled on a pair of short, triple-wheeled continuous track setups (one per side), with twin trailing lifting arms, that lifted the stationary aircraft off the ground from under each wing.[11] Another form of trailer, known also to have been trialled with the later B-series examples, was tried during the Komet's test phase, which used a pair of sausage-shaped air bags in place of the lifting arms and could also be towed by the Scheuch-Schlepper tractor, inflating the air bags to lift the aircraft.[12][13] The three-wheeled Scheuch-Schlepper tractor used for the task was originally meant for farm use, but such a vehicle with a specialized trailer was required as the Komet was unpowered after exhausting its rocket propellants, and lacked main wheels after landing, from the jettisoning of its ""dolly"" main gear at takeoff.[14]

During flight testing, the superior gliding capability of the Komet proved detrimental to safe landing. As the now un-powered aircraft completed its final descent, it could rise back into the air with the slightest updraft. Since the approach was unpowered, there was no opportunity to make another landing pass. For production models, a set of landing flaps allowed somewhat more controlled landings. This issue remained a problem throughout the program. Nevertheless, the overall performance was tremendous, and plans were made to put Me 163 squadrons all over Germany in 40-kilometre rings (25 mi) around any potential target. Development of an operational version was given the highest priority.

A simplified construction format for the Me 163 fighter's airframe was deemed necessary, as the Me 163A version was not truly optimized for large-scale production, with design work starting in December 1941. The result was the Me 163B subtype, which had the desired, more mass-producible fuselage, wing panel, retractable landing skid and tailwheel designs with the previously mentioned unsprung ""dolly"" takeoff gear, and a generally one-piece nose for the forward fuselage which could incorporate a pioneering example of a ""windmill"" generator at the extreme front for supplementary electrical power while in flight, as well as a one-piece, perimeter frame-only hinged canopy[clarification needed] for ease of production.[15][not in citation given]

Meanwhile, Walter had started work on the newer HWK 109-509 bipropellant hot engine, which added a true fuel of hydrazine hydrate and methanol, designated C-Stoff, that burned with the oxygen-rich exhaust from the T-Stoff, used as the oxidizer, for added thrust (see: List of Stoffs). The new powerplant and numerous detail design changes meant to simplify production over the general A-series airframe design resulted in the significantly modified Me 163B of late 1941. Due to the Reichsluftfahrtministerium (RLM) requirement that it should be possible to throttle the engine, the original power plant grew complicated and lost reliability. The new fuel proved an unfortunate choice as well, since hydrazine hydrate was also used in the launcher of the V-1 flying bomb and was in short supply throughout the 1943–45 period.

The fuel system was particularly troublesome, as leaks incurred during hard landings easily caused fires and explosions. Metal fuel lines and fittings, which failed in unpredictable ways, were used as this was the best technology available. Both fuel and oxidizer were toxic and required extreme care when loading in the aircraft, yet there were occasions when Komets exploded on the tarmac from the propellants' hypergolic nature. Both propellants were clear fluids, with different tanker trucks used for delivering each propellant to a particular Komet aircraft, one at a time, with one truck - usually the one delivering the C-Stoff hydrazine/methanol-base fuel - leaving the immediate area of the aircraft following its delivery and capping off of the Komet's fuel tanks from a rear located dorsal fuselage filling point just ahead of the Komet's vertical stabilizer, before the other truck - most often an Opel Blitz tanker truck, of a special Ausführung S model carrying the very reactive T-Stoff hydrogen peroxide oxidizer would come anywhere near to deliver its oxidizer load to the fighter for safety reasons, through a different filling point on the Komet's dorsal fuselage surface, located not far behind the rear edge of the canopy.[16]

The corrosive nature of the liquids, especially for the T-Stoff oxidizer, required special protective gear for the pilots. To help prevent explosions, the Walter rocket engine and the Komet's propellant storage and delivery systems were frequently and thoroughly hosed down and flushed with water run through both the fuel and oxidizer tanks and rocket engine's propellant systems before and after flights, to clean out any remnants of the hypergolic fuel and oxidizer.[17] The relative ""closeness"" to the pilot of some 120 litres (31.7 US gal) of the chemically active T-Stoff oxidizer, split between two auxiliary oxidizer tanks of equal volume to either side within the lower flanks of the cockpit area — besides the main oxidizer tank of some 1,040 litre (275 US gal) volume just behind the cockpit's rear wall, could present a serious or even fatal hazard to a pilot in a fuel-caused mishap with the Me 163B.[18]

Two prototypes were followed by 30 Me 163 B-0 pre-production aircraft armed with two 20 mm MG 151/20 cannon and some 400 Me 163 B-1 production aircraft armed with two 30 mm (1.18 inch) MK 108 cannons, but which were otherwise similar to the B-0. Occasional references to B-1a or Ba-1 subtypes are found in the literature on the aircraft, but the meanings of these designations are somewhat unclear. Early in the war, when German aircraft firms created versions of their aircraft for export purposes, the a was added to export (ausland) variants (B-1a) or to foreign-built variants (Ba-1) but for the Me 163, there were neither export nor a foreign-built version. Later in the war, the ""a"" and successive letters were used for aircraft using different engine types: as Me 262 A-1a with Jumo engines, Me 262 A-1b with BMW engines. As the Me 163 was planned with an alternative BMW P3330A rocket engine, it is quite safe to assume the ""a"" was used for this purpose on early examples. Only one Me 163, the V10, was tested with the BMW engine, so this designation suffix was soon dropped. The Me 163 B-1a did not have any wingtip ""washout"" built into it, and as a result, it had a much higher critical Mach number than the Me 163 B-1.[19]

The Me 163B had very docile landing characteristics, mostly due to its integrated leading edge slots, located directly forward of the elevon control surfaces, and just behind and at the same angle as the wing's leading edge. It would neither stall nor spin. One could fly the Komet with the stick full back, and have it in a turn and then use the rudder to take it out of the turn, and not fear it snapping into a spin. It would also slip well. Because it was derived from a glider, it had excellent gliding qualities, and had tendency to continue flying above the ground due to ground effect. On the other hand, making a too close turn from base onto final, the sink rate would increase, and one could quickly lose altitude and come in short. Another main difference from a propeller-driven aircraft is that there was no slipstream over the rudder. On takeoff, one had to attain the speed at which the aerodynamic controls become effective—about 129 km/h (80 mph)—and that was always a critical factor. Pilots used to flying propeller-driven aircraft had to be careful the control stick was not somewhere in the corner when the control surfaces began working. These, like many other specific Me 163 problems, would be resolved by specific training.

The performance of the Me 163 far exceeded that of contemporary piston engine fighters. At a speed of over 320 km/h (200 mph) the aircraft would take off, in a so-called ""scharfen start"" (""sharp start"") from the ground, from its two-wheeled dolly. The aircraft would be kept at level flight at low altitude until the best climbing speed of around 676 km/h (420 mph) was reached, at which point it would jettison the dolly, pull up into a 70° angle of climb, heading upwards rapidly to a bomber's altitude. It could go higher if required, reaching 12,000 m (39,000 ft) in an unheard of three minutes. Once there, it would level off and quickly accelerate to speeds around 880 km/h (550 mph) or faster, which no Allied fighter could match. The usable Mach number was similar to that of the Me 262, but because of the high thrust-to-drag ratio, it was much easier for the pilot to lose track of the onset of severe compressibility and loss of control. A Mach warning system was installed as a result. The aircraft was remarkably agile and docile to fly at high speed. According to Rudolf Opitz, chief test pilot of the Me 163, it could ""fly circles around any other fighter of its time"".

By this point, Messerschmitt was completely overloaded with production of the Messerschmitt Bf 109 and attempts to bring the Me 210 into service. Production in a dispersed network was handed over to Klemm, but quality control problems were such that the work was later given to Junkers, who was, at that time, underworked. As with many German designs of World War II's later years, parts of the airframe (especially the wings) were made of wood by furniture manufacturers. The older Me 163A and first Me 163B prototypes were used for training. It was planned to introduce the Me 163S, which removed the rocket engine and tank capacity and placed a second seat for the instructor above and behind the pilot, with its own canopy. The Me 163S would be used for glider landing training, which as explained above, was essential to operate the Me 163. It appears the 163 Ss were converted from the earlier Me 163B series prototypes.

In service, the Me 163 turned out to be difficult to use against enemy aircraft. Its tremendous speed and climb rate meant a target was reached and passed in a matter of seconds. Although the Me 163 was a stable gun platform, it required excellent marksmanship to bring down an enemy bomber. The Komet was equipped with two 30 mm (1.18 inch) MK 108 cannons which had a relatively low muzzle velocity of 540 meters per second (1,207 mph, 1,944 km/h), with the characteristic ballistic drop of such a weapon. The drop meant they were only accurate at short distance, and that it was almost impossible to hit a slow moving bomber when the Komet was traveling very fast. Four or five hits were typically needed to take down a B-17.

A number of innovative solutions were implemented to ensure kills by less experienced pilots. The most promising was a unique weapon called the Sondergerät 500 Jägerfaust. This consisted of a series of single-shot, short-barreled 50 mm (2 inch) guns pointing upwards. Five were mounted in the wing roots on each side of the aircraft. The trigger was tied to a photocell in the upper surface of the aircraft, and when the Komet flew under the bomber, the resulting change in brightness caused by the underside of the aircraft could cause the rounds to be fired. As each shell shot upwards, the disposable gun barrel that fired it was ejected downwards, thus making the weapon recoilless. It appears that this weapon was used in combat only once, resulting in the destruction of a Halifax bomber, although other sources say it was a Boeing B-17.[20][21][22]

type=real photographic (rp)

period=post-war (1945-present)

postage condition=unposted

number of items=single

size=continental/ modern (150x100 mm)

county/ country=london

Listing Information

Listing TypeGallery Listing
Listing ID#140774430
Start TimeMon 06 Jul 2015 22:10:45 (NZST)
Close TimeRun Until Sold
Starting BidFixed Price (no bidding)
Item ConditionUsed
Bids0
Views229
Dispatch Time2 Days
Quantity1
LocationUnited Kingdom
Auto ExtendNo

Seller Recent Feedback

Returns Policy

Purchase Activity

Username Time & Date Amount
No Bids as of Yet
This is a single item listing. If an auction is running, the winning bidder will be the highest bidder.

Questions and Answers

No Questions Asked About This Listing Yet
I understand the Q&A policies